

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Tetrahedron Letters Vol. 49, No. 32, 2008

Contents

COMMUNICATIONS

Microwave-assisted three-component Knoevenagel-nucleophilic aromatic substitution reactions

pp 4687-4689

Hui Xu, Xinhong Yu *, Leying Sun, Jing Liu, Wen Fan, Yongjia Shen *, Wei Wang *

Synthesis of unsymmetrical spin-labelled bolaamphiphiles

pp 4690-4692

Mathieu Berchel, Loïc Lemiègre, Jelena Jeftić, Thierry Benvegnu *

Palladium-catalyzed cyanation of aryl halides using $K_4[Fe(CN)_6]$ as cyanide source, water as solvent, and microwave heating

pp 4693-4694

Sivan Velmathi, Nicholas E. Leadbeater *

$Design\ and\ synthesis\ of\ \textit{(E)-4-((3-ethyl-2,4,4-trimethylcyclohex-2-enylidene)} methyl) benzoic\ acid$

pp 4695-4696

Bhaskar C. Das *, George W. Kabalka

(E)-4-((3-ethyl-2,4,4-trimethylcyclohex-2-enylidene)methyl)benzoic acid

Salicylaldehyde fluorescein hydrazone: a colorimetric logic chemosensor for pH and Cu(II)

pp 4697-4700

Xiaotong Chen, Zifan Li, Yu Xiang, Aijun Tong

This chemosensor presented a tunable system integrated with a Cu(II)-driven YES logic gate as well as an INHIBIT logic gate with two chemical inputs of pH and Cu(II).

Catalytic enantioselective allylation of aldehydes using β -amido functionalized allylstannanes with chiral In(OTf)₃/i-Pr-pybox complexes

pp 4701-4703

Takamasa Suzuki, Tetsuya Sengoku, Masaki Takahashi, Hidemi Yoda *

Aminomethylation of chiral silyl enol ethers: access to β^2 -homotryptophane and β^2 -homolysine derivatives

pp 4704-4707

Roba Moumné, Maud Larregola, Youcef Boutadla, Solange Lavielle, Philippe Karoyan *

$$H_2C=N^+Bn_2$$
 $CF_3CO_2^ Bn_2N$
 $R = (CH_2)_4Br \text{ or } -CH_2(3-\text{indolyl-}N-Bn)$

Selective and mild oxidation of sulfides to sulfoxides or sulfones using H₂O₂ and Cp/Mo(CO)₃Cl as catalysts

pp 4708-4712

Carla A. Gamelas *, Tiago Lourenço, André Pontes da Costa, Ana L. Simplício, Beatriz Royo, Carlos C. Romão *

$$R_1 = \frac{\text{Cp'Mo(CO)}_3\text{Cl}, -1 \text{ eq. H}_2\text{O}_2}{\text{Acetone:MeOH, low to rt}} = \frac{\text{Cp'Mo(CO)}_3\text{Cl}}{\text{R}_2} = \frac{\text{R}_1}{\text{R}_2} = \frac{\text{R}_2}{\text{R}_2} = \frac{\text{R}_2}{$$

$Chemose lective\ cross-coupling\ Suzuki-Miyaura\ reaction\ of\ (\emph{Z})-(2-chlorovinyl) tellurides\ and\ potassium\ aryltrifluoroborate\ salts$

pp 4713-4716

Rafael C. Guadagnin, Carlos A. Suganuma, Fateh V. Singh, Adriano S. Vieira, Rodrigo Cella, Hélio A. Stefani *

(i)+

Concomitant morpholine ring contraction and pyridine lithiation in 4-morpholinopyridine: straightforward access to N-pyridyl oxazolidines

pp 4717-4719

Philippe C. Gros *, Abdelhatif Doudouh, Christopher Woltermann

A convenient synthesis of substituted 2,2':6',2"-terpyridines

pp 4720-4721

Alexander Gehre, Stephen P. Stanforth *, Brian Tarbit

Novel vinyl ether functionalized fluorene polymers for active incorporation into common photoresist matrices

pp 4722-4724

Alexander J. C. Kuehne *, Allan R. Mackintosh, R. A. Pethrick, Bernd Tieke

Synthesis of 5-(trifluoromethyl)cyclohexane-1,3-dione and 3-amino-5-(trifluoromethyl)cyclohex-2-en-1-one: new trifluoromethyl building block

pp 4725-4727

Olugbeminiyi O. Fadeyi, Cosmas O. Okoro *

(a) 5M NaOH, H₂O, Heat, 1h. (b) NH₄(OAc), xylene, reflux, 3h.

A simple synthesis of 5-(trifluoromethyl)cyclohexane-1,3-dione and 3-amino-5-(trifluoromethyl)cyclohex-2-en-1-one from the sodium salt of methyl or ethyl-4-hydroxy-2-oxo-6-(trifluoromethyl)cyclohex-3-en-1-oate is demonstrated. The compounds represent highly functionalized reactive intermediates for the synthesis of organic and heterocyclic compounds containing a trifluoromethyl group.

Stereoselective synthesis of safingol and its natural stereoisomer from p-glycals

pp 4728-4730

Hari Prasad Kokatla, Ram Sagar, Yashwant D. Vankar *

Efficient and convenient syntheses of (2S,3S)-safingol and its natural (2S,3R)-isomer have been developed from 3,4,6-tri-O-benzyl glycals. The key step is the one-pot reduction of an azide, saturation of the double bonds and debenzylation under catalytic hydrogenation.

Selective synthesis of 5-alkenyl-15-alkynyl-porphyrin and 5,15-dialkynyl-porphyrin by 2+2 acid-catalyzed condensation of dipyrrylmethane and TMS propynal

pp 4731-4733

Hiroko Yamada *, Kayo Kushibe, Satoshi Mitsuogi, Tetsuo Okujima, Hidemitsu Uno, Noboru Ono

One of 5-alkenyl-15-alkynyl-porphyrin and 5,15-dialkynyl-porphyrin was prepared selectively by 2+2 acid-catalyzed condensation in the presence of $BF_3 \cdot OEt_2$ only by the choice of the solvent.

Stereoselective α -galactofuranosylation and synthesis of di- and tetrasaccharide subunits of cell wall polysaccharides of *Talaromyces flavus*

pp 4734-4737

Ju Yuel Baek, Yong Jae Joo, Kwan Soo Kim *

Efficient heterogeneous vinylation of aryl halides using potassium vinyltrifluoroborate

pp 4738-4741

Lionel Joucla, Giuseppe Cusati, Catherine Pinel *, Laurent Djakovitch *

Azido-Schmidt reaction for the formation of amides, imides and lactams from ketones in the presence of $FeCl_3$

pp 4742-4745

J. S. Yadav *, B. V. Subba Reddy, U. V. Subba Reddy, K. Praneeth

Parallel solution phase synthesis of a library of amino acid derived 2-arylamino-[1,3,4]-oxadiazoles Julia I. Gavrilyuk, Alan J. Lough, Robert A. Batey *

pp 4746-4749

$$\begin{array}{c} R^2 \\ N \\ H \end{array} \begin{array}{c} R^1 \\ OH \end{array} \begin{array}{c} \text{(i) EDCI, H_2NNH_2 \cdot H_2O} \\ \text{(ii) ArNCS} \\ \hline \text{(ii) Et}_3N, \text{Hg(II) } \textit{or} \\ \text{CMPI } \textit{or} \text{ polymer} \\ \text{supported CMPI} \\ \end{array}$$

Thermodynamics versus kinetics in hetero-Michael cyclizations: a highly stereoselective approach to access both epimers of a C-p-mannopyranoside

pp 4750-4753

Vincent Aucagne *, Arnaud Tatibouët, Patrick Rollin

Synthetic studies on the taxane skeleton: effective construction of eight-membered carbocyclic ring by palladium-catalyzed intramolecular α -alkenylation of a methyl ketone

pp 4754-4757

Masayuki Utsugi, Yasuaki Kamada, Masahisa Nakada

Synthesis of the functionalized cavitands with inwardly directed dialkylsilyl groups and phosphorous lone pairs

pp 4758-4762

Tetsuo Iwasawa *, Yoshiki Nishimoto, Kento Hama, Toshinori Kamei, Masaki Nishiuchi, Yasuhiko Kawamura *

Functionalized cavitands with silyl and phosphorous groups have been successfully synthesized.

(i)+

Facile preparation of 3-acetoxycyclobutanone

pp 4763-4764

Matthew A. Zajac

3-Acetoxycyclobutanone is a versatile intermediate to access cyclobutanes with a variety of substitution patterns. Established procedures require a two step process that includes multiple distillations. We report a one-pot procedure that renders this compound readily available. Additionally, it was determined that copper plays a key role in the reaction sequence.

Synthesis and characterisation of the 3-amino-derivative of γ -cyclodextrin, showing receptor ability and metal ion coordination properties

pp 4765-4767

Annalinda Contino, Vincenzo Cucinotta *, Alessandro Giuffrida, Giuseppe Maccarrone, Marianna Messina, Antonino Puglisi, Graziella Vecchio

H,N O
$$Cu(NO_3)_2$$
 $pH = 7.0$ $pH = 4.8$ $pH = 4.8$

The 3-amino γ -cyclodextrin: a new receptor able to coordinate copper(II) and to form an inclusion complex with anthraquinone 2-sulfonate.

Synthesis of chiral non-racemic substituted vinyl aziridines

pp 4768-4770

Kordi Chigboh, Daniel Morton, Alan Nadin, Robert A. Stockman *

39-90% Yield, 1:1 to 100:0 trans:cis, up to 99% de

Synthesis of spiroacetals using functionalised titanium carbenoids

pp 4771-4774

Calver A. Main, Shahzad S. Rahman, Richard C. Hartley *

$$R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{(i)}} O}_{\text{(ii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(ii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iiii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iiii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iiii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iiii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iiii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iiiii) conc. HCl}_{(aq)}\text{-MeOH (1:9)}} R^{1} \underbrace{\bigcirc \bigcap_{n = 1 \text{ or } 2}^{\text{O}} O}_{\text{(iiiii) conc. HCl}_{(aq)}\text$$

Synthesis of a new nitrogenated drimane derivative with antifungal activity

pp 4775-4776

Miguel Zárraga *, Ana María Zárraga, Benito Rodríguez, Claudia Pérez, Cristian Paz, Pablo Paz, Carlos Sanhueza

On the scope of radical reactions in aqueous media utilizing quaternary ammonium salts of phosphinic acids as chiral pp 4777–4779 and achiral hydrogen donors

V. T. Perchyonok *, Kellie L. Tuck *, Steven J. Langford, Milton W. Hearn

excellent yields

The synthesis of compounds related to the indole–indoline core of the vinca alkaloids (+)-vinblastine and (+)-vincristine

pp 4780-4783

Michael J. Harvey, Martin G. Banwell *, David W. Lupton

Analogs, 9, of the indole-indoline core of the title alkaloids have been prepared, via intermediates 10, from α -iodoenones of the general form 11.

Synthesis and characterization of a paramagnetic receptor based on cyclobis(paraquat-p-phenylene) tetracation

pp 4784-4787

Andrea Margotti, Costanza Casati, Marco Lucarini, Elisabetta Mezzina

Synthesis and isolation of a complex between cyclobis(paraquat-p-phenylnene) tetracation carrying one paramagnetic side-arm and 1,5-dimethoxynaphthalene was achieved by the clipping procedure.

Selective synthesis of α -substituted β -keto esters from aldehydes and diazoesters on mesoporous silica catalysts

pp 4788-4791

Hiroaki Murata, Haruro Ishitani, Masakazu Iwamoto *

Synthesis and characterization of 9,9-dialkylfluorene capped benzo[c]thiophene/benzo[c]selenophene analogs as potential OLEDs

pp 4792-4795

Arasambattu K. Mohanakrishnan *, Natarajan Senthil Kumar, P. Amaladass

$$Ar^1$$
 $X = O, S, Se$
 $R^1 = alkyl$
 $Ar^1 = aryl/hetroaryl$

Manganese amido-imine bisphenol Hangman complexes

pp 4796-4798

Jenny Y. Yang, Daniel G. Nocera *

 $A\ catalyst-free\ N-benzy loxy carbonylation\ of\ amines\ in\ aqueous\ micellar\ media\ at\ room\ temperature$

pp 4799-4803

Janhavi J. Shrikhande, Manoj B. Gawande, Radha V. Jayaram *

$$R = alkyl, aryl$$

OTHER CONTENTS

Corrigendum p 4804
Calendar p I

 $^* Corresponding \ author \\$

**D+ Supplementary data available via ScienceDirect

Available online at www.sciencedirect.com

Abstracted/indexed in: AGRICOLA, Beilstein, BIOSIS Previews, CAB Abstracts, Chemical Abstracts, Chemical Engineering and Biotechnology Abstracts, Current Biotechnology Abstracts, Current Contents: Life Sciences, Current Contents: Physical, Chemical and Earth Sciences, Current Contents Search, Derwent Drug File, Ei Compendex, EMBASE/Excerpta Medica, Medline, PASCAL, Research Alert, Science Citation Index, SciSearch. Also covered in the abstract and citation database SCOPUS®. Full text available on ScienceDirect®

